Main Point

This paper examines voice onset time (VOT) of the stops /p. and /k/ in American English according to surrounding prosodic environments. For each type of syllable containing the target stop (the C below), the preceding environment and an example word from the experiment are given.

example	preceding environment	target stop context		
<u>p</u> oodle <u>c</u> ooling	boundary			
a <u>pp</u> eal	unstressed syllable	<u>C</u> ý		
Pe <u>k</u> ing Ro <u>ck</u> ettes	secondary stress			
<u>P</u> eking	boundary	C		
O <u>c</u> onomowokian	unstressed syllable	<u>~</u> v		

	example	preceding environment	target stop context
	<u>p</u> olice <u>c</u> aboose	boundary	
	Oedi <u>p</u> us Connecti <u>c</u> ut Nebu <u>k</u> adnezzar Winne <u>p</u> egosis	unstressed syllable	<u>C</u> v ≅
	fla <u>pp</u> er frea <u>k</u> y anodictic	stress (primary or secondary)	

Background

HISTORY (Lisker & Abramson 1964, 1967, 1970, Selkirk 1982):

- 1. importance of VOT for stop voicing distinctions
- 2 VOT usually tends to cluster around three values
 - a. voiced unaspirated (prevoicing)
 - b. voiceless aspirated (long-lag voicing)
- c. voiceless unaspirated (short-lag voicing)
- **and these values are supposed to account for the stops of all
- 3. in English, the traditional description for isolated stops is:
 - a. voiced unaspirated for "voiced" stops voiceless unaspirated for word-medial, unstressed
 - syllables c. voiceless aspirated for (i) stressed syllables and
 - (ii) word-initially

BUT it is known that in individual languages and in certain contexts within a language VOT values vary widely from the archetypical modes

For Example (Withgott 1982, Steriade 2000, Jensen 2000, Davis &

+when flanked on right and left by stressless syllables, American English /t/ resists flapping

Navratilova

Mediterranean

SO are the VOT of /p/ and /k/ similarly affected? That is, between stressless syllables, what are the VOT values of

Oedi<u>p</u>us Connecticut Winnepegosis Nebukadnezzar

5aSC3. Voice onset time of American English stops with prosodic correlates.

Mark Van Dam

(myandam@indiana.edu)

Department of Linguistics, Indiana University

Research Ouestion:

What are the prosodic effects on VOT due to

- word position stress
- remote stress in long words

Methods

CONDITIONS:

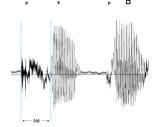
		word boundary precedes # <u>C</u>	unstressed V precedes v <u>C</u>	stressed V precedes v <u>C</u> , v <u>C</u>
	stressed syll, initial <u>C</u> ý, <u>C</u> ỳ	<u>p</u> oodle <u>c</u> ooling	a <u>pp</u> eal O <u>c</u> onomowokian	Pe <u>k</u> ing Ro <u>ck</u> ettes
	unstressed syll. initial	<u>p</u> olice <u>k</u> azoo	Oedi <u>p</u> us Connecti <u>c</u> ut Nebu <u>k</u> adnezzar Winne <u>p</u> egosis	fla <u>pp</u> er frea <u>k</u> y a <u>p</u> odictic

FACTS and ASSUMPTIONS:

- all target stops are either word initial with a following vowel or intervocalic (no stops in clusters or word-final stops are considered)
- 2. primary and secondary stress are conflated to stressed; stressed contrasts with unstressed
- 3. in a VCV sequence, the syllable boundary is V+CV

MATERIALS: target words were sentence-medial: pinball games use a flapper on each side learning the kazoo will make you popular

TOTAL CORPUS-


- 42 target words embedded in sentences
- x 4 to 6 repetitions
- x 4 speakers
- 722 tokens

SPEAKERS.

-2 male, 2 female -native American English with no obvious regional dialects (2 from Indiana, 1 Northern, 1 'mobile') -all report normal hearing and speaking -all university students between 19 and 25 yrs.

MEASUREMENTS

VOT was measured from the release of the stop consonant to the onset of voicing.

One token of pepper (approx. 310ms). A transcription is given above the waveform. (a) indicates the approximate VOT measurement points (63ms)

Results

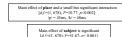
SUMMARY: three different levels of VOT (Long, Mid, Short) were found in the English voiceless stops considered. None of the stops were voiced.

	Long	Mid	Short
it s	• in a stressed syllable	• in a stressless syll. when <u>not</u> immediately preceded by a stressed syll. (ie., word bound. or stressless syll. precedes)	 in a stressless syll. when immediately preceded by a stressed syll.
les	poodle <u>c</u> ooling a <u>pp</u> eal O <u>c</u> onomowokian Pe <u>k</u> ing Ro <u>ck</u> ettes	police <u>k</u> azoo Oedipus Connecti <u>c</u> ut Nebu <u>k</u> adnezzar Winnepegosis	fla <u>pp</u> er frea <u>k</u> y a <u>p</u> odictic

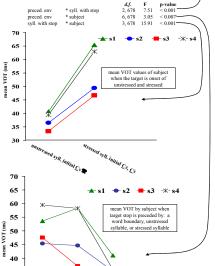
where i

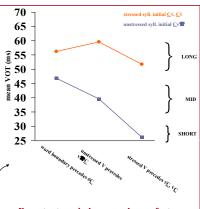
occurs

Deep appreciation goes to Stuart Davis, Ken deJong, and Bob Port, without whose seemingly endless patience and remarkable expertise, none of this work could have been done. Many thanks also to the Intonation and Prosody group who offered many suggestions during the spring of 2003. Errors are the responsibility of the author


ANOVA Analysis

Four-way ANOVA of VOT with the following factors:


- O environment before stop (stress., unstress., boundary)
- 2 syllable containing stop (stressed, unstressed)
- 3 place of articulation (p or k)
- subject (s1, s2, s3, s4)


35

30

ILLUSTRATIVE INTERACTION EFFECTS:

Remote stress in long words as a factor

(n=101; d.f.=(1, 99), F=1.906, p=0.171).

If a stressless vowel immediately precedes a stop in a stressless syllable (vacva), the VOT is not significantly different when the main stress either precedes or follows

Conclusions

- 1. previous (generative) descriptions fail to account for the acoustic facts; at least three categories are needed for voiceless stops in English
- 2. stops before stress tend to have long VOT
- 3. stops after stress tend to have short VOT
- 4. stops with no adjacent stress (#Cv are or vacvar) tend to have mid VOT

References

Davis, Stuart and Mi-Hui Cho (2003). "The distribution of aspirated stops and /h/ in American English and Korean: an alignment approach with typological implications". *Linguistics* 41: 601-652

delong Kenneth (1998). "Stress-related variation in the articulation of coda alveolar stops: flanning ted" Journal of Phonetics 26: 283-310.

Jensen, John T. (2000). "Against Ambisvllabicity". Phonology 17: 187-235.

Lisker, L. and A. Abramson (1964). "Cross-language study of voicing in initial stops: acoustical

Lisker, L. and A. Abramson. (1967). "Some effects of context on voice onset time in English stons inguage and Speech 10: 1-28.

Lisker, L. and A. Abramson (1970). "The voicing dimension: some experiments in comparative phonetics." in Proceedings of the Sixth International Congress of Phonetic Sciences. Prague:

Selkirk, E. O. (1982). "The Syllable." In The Structure of Phonological Representations, Part II. Harry van der Hulst and Norval Smith (eds.). 337,383. Dordrocht: Foris

Steriade, Donca (2000). "Paradigm uniformity and the phonetics-phonology boundary". In Papers in Laboratory Phonology V: Acquisition and the Lexicon, Michael Broe and Janet Pierrehumbert (eds.), 313-334. Cambridge: Cambridge University Press.

Withgott, Mary (1982). "Segmental evidence for phonological constituents" unpublished PhD diss.,