Economy and invariance are unjustified assumptions in formal phonology

Mark VanDam
NAPhC5
10 May 2008
Montréal, QC
Traditional linguistic model

What is a FORM in competence?

- only performance is directly observed
- competence (then meaning) is inferred

How is a (possible) FORM identified?

-a minimal pair demands explicit formal representation in competence
Minimal pair

<table>
<thead>
<tr>
<th></th>
<th>$b_{\Lambda g}$</th>
<th>$p_{\Lambda g}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>consonantal</td>
<td>+</td>
</tr>
<tr>
<td>—</td>
<td>continuant</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>sonorant</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>nasal</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>coronal</td>
<td>—</td>
</tr>
<tr>
<td>+</td>
<td>labial</td>
<td>+</td>
</tr>
<tr>
<td>—</td>
<td>strident</td>
<td>—</td>
</tr>
<tr>
<td>+</td>
<td>voice</td>
<td>—</td>
</tr>
</tbody>
</table>
Traditional linguistic model

1. How many forms?
 Greek, about 24
 Port-Royal, 25-30
 Jakobson-Fant-Halle, 12
 SPE, about 40
 Optimality Theory, assume SPE’s 40 or so
 no consensus, but features must be
 limited in number: economy
 Why? descriptive simplicity, computational tractability,
 typological universality, elegance, Occam, etc.

2. What is the nature of a form?
 timeless and perfective: invariance
 Why? perfectly recognizable, modular naivety, aut Caesar
 [Chomsky] aut nihil, perception depends on bi-directionality,
 Universal Grammar, "represent the phonetic capabilities of
 man" (SPE: 295), transmittable, etc.
Traditional linguistic model

Benefits of assuming economy and invariance:

1. tractable due to constrained resources (storage space, processing)

2. powerful: limited units of representation, unlimited output

Potential costs of assuming economy and invariance:

1. power is a function of economy: as more forms are admitted to the model (ie, less economy), theoretical power declines.

 What evidence challenges the proposition of economy?

 ID minimal pairs, increasing # of necessary forms

2. model has no way of dealing with variance. If variation is found, there is no apparent or obvious way out.

 What evidence challenges the proposition of invariance?

 flexible linguistic representations (forms) over time
Empirical research questions

Experiment 1: test economy
(1a) are there (new) minimal contrasts for words differing by lexical usage frequency?

(1b) are there (new) minimal contrasts for words versus non-words?

Experiment 2: test invariance
are linguistic categories (forms) flexible?
can experience easily affect representations (forms)?
Experiment 1a & 1b: economy

DV: VOT boundary (ms)

IV: lexical status

<table>
<thead>
<tr>
<th>LEX-STATUS</th>
<th>[d] non-word</th>
<th>[d] word</th>
</tr>
</thead>
<tbody>
<tr>
<td>[t] word</td>
<td>talc ~ dalc</td>
<td>teal ~ deal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>usage frequency</th>
<th>USAGE-FREQ</th>
<th>[d] low-freq</th>
<th>[d] high-freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>[t] low-freq</td>
<td>tine ~ dine</td>
<td>ton ~ done</td>
<td></td>
</tr>
<tr>
<td>[t] high-freq</td>
<td>time ~ dime</td>
<td>town ~ down</td>
<td></td>
</tr>
</tbody>
</table>

Task: for 30 word pairs; presented with an acoustic token from VOT continuum, then identify "A for 'teal' B for 'deal'"

Data: 220k responses, 27k boundaries

Analysis: differences among voicing boundary locations
Voice-onset time (VoT):
Anatomy of a category boundary shift

- Proportion 'voiced' response
- Voicing lag (VoT) in milliseconds

Graph showing the proportion of voiced responses over time for 'dime' and 'time' categories, with 'time-2' and 'dime-2' indicating specific points on the graph.
Experiment 1a & 1b: economy

Are voicing boundaries different based on lexical status?

<table>
<thead>
<tr>
<th>LEX-STATUS</th>
<th>[d] non-word</th>
<th>[d] word</th>
</tr>
</thead>
<tbody>
<tr>
<td>[t] word</td>
<td>dalc ~ talc</td>
<td>deal ~ teal</td>
</tr>
</tbody>
</table>

Are voicing boundaries different based on lexical usage frequency?

<table>
<thead>
<tr>
<th>USAGE-FREQ</th>
<th>[d] low-freq</th>
<th>[d] high-freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>[t] low-freq</td>
<td>dine ~ tine</td>
<td>done ~ ton</td>
</tr>
<tr>
<td>[t] high-freq</td>
<td>dime ~ time</td>
<td>down ~ town</td>
</tr>
</tbody>
</table>
Non-word bias over words

- diffs significant
- diffs small, 6.0ms
- bias only tested in voiced series
High usage-frequency bias, voiced only

- voiced
 - diffs signif
 - small, 2.7 ms

- voiceless
 - diffs not signif

usage-frequency

boundary, VoT (ms)

- LOW
- HIGH
- LOW
- HIGH
Formal invariance
Methodology, Experiment 2: formal invariance

DV: VOT boundary (ms)

IV: training exposure (control, lengthened)
- control targets = 80% VOT for 12 target words
- lengthened targets = 180% VOT for 12 target words

Procedure: pretest, training (5 days), posttest

Task (pretest and posttest): "press A for TEAL or B for DEAL"

Task (training): listen-and-repeat phrases from 4-minute/600 word story. 12 voiceless targets occur twice each in story.

eg: over the rusty keel section of the boat
 buy all the talc from the general store

Analysis: differences among voicing boundary locations
Results recap

Exp-1a. lexical status: word versus non-word?
non-word bias in the voiced series
ie, dope-taupe and dop-top have different structure
→ the two minimal pair contrasts differ
→ formal model demands unique form to represent lexical contrast

Exp-1b. usage frequency: high versus low frequency?
high-frequency bias, voiced series only
ie, done-ton and den-ten have different structure
→ the two minimal pair contrasts differ
→ formal model demands unique form to represent frequency contrast

Exp-2. category flexibility: controlled versus lengthened exposure?
lengthened exposure changed category boundary, control did not
ie, experience with longer tokens changed structure of category
→ linguistic voicing category is highly flexible
→ formal model cannot account for this data
Present results compatible with other work

(1) perceptual learning
 (Kraljic & Samuel 2005, 2006; Norris, McQueen, & Cutler 2003)

(2) listener sensitivity to variability

(3) exemplar-, episodic-, rich-memory language models
 (Goldinger 1997, 1998; Pierrehumbert 2001; Johnson 1997; Port 2007)

(4) usage-based models
 (Hooper 1976; Phillips 1984; Johnson 1997; Bybee 2002)
Formal-theoretic assumptions of economy and invariance are violated.

What sort of theory can account for the facts?
Abstract and detailed representation, Rich-memory approach

<table>
<thead>
<tr>
<th>p</th>
<th>Λ</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>consonant</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>continuant</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>sonorant</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>nasal</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>coronal</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>labial</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>strident</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>voice</td>
<td>—</td>
<td>+</td>
</tr>
</tbody>
</table>

END