Automatic speech recognition of naturalistic recordings in families with children who are hard of hearing

Mark VanDam¹ & Noah Silbert²

¹Department of Speech & Hearing Sciences
Washington State University

²Department of Communication Sciences & Disorders
University of Cincinnati

Talk 4pSC presented at the 167th Meeting of the Acoustical Society of America, Providence, RI, May 8, 2014
Acknowledgments
Mary Pat Moeller
Nicholas A. Smith
Sophie E. Ambrose
Lisa Burton
J. Bruce Tomblin
Rick Arenas
Jake Oleson
D. Kim Oller
Sandie Bass-Ringdahl
Jill Gilkerson
Dongxin Xu
Jeff Richards
Shana Bailey
Elisa Romaneschi

NIDCD: R01 DC009569, DC009560-01S1
PIs: MP Moeller and JB Tomblin

Such data is very expensive to collect and difficult to analyze and interpret. It took H&R 3 yrs to collect and 6 yrs to interpret.

But now, useful child language data is collected using automatic speech processing (ASP) technology.
Researchers are using the **Language ENvironment Analysis, LENA**

Aragon & Yoshinaga-Itano (2012) *Sem Speech & Lang*
Suskind, et al (2013) *Comm Disord Quarterly*
Weisleder & Fernald (2013) *Psych Science*
VanDam & Silbert (2013) *POMA*

Primary research goals of this work are to (1) address goodness of *LENA* ASR technology and (2) examine performance with hard-of-hearing children.
Data collection

[Image of a LENA device]

[Image of a family at a park]

[Images of children]
Labels on the acoustic signal:

- **KEY-CHILD**
- **ADULT-MALE**
- **ADULT-FEMALE**
- **OTHER-CHILD**
- **SILENCE**
- **NOISE**
- **ELECTRONIC (TV, RADIO)**
- **UNCERTAIN / FUZZY**
- **OVERLAPPING VOCALS**

live human vocals

other acoustic events

Start Date: 2009-10-27 Start Time: 21:33:51 GMT

<table>
<thead>
<tr>
<th>Use</th>
<th>Conversation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOF</td>
<td>MAN</td>
</tr>
<tr>
<td></td>
<td>SIL MAN</td>
</tr>
<tr>
<td>[BC</td>
<td>1</td>
</tr>
</tbody>
</table>

Selection: 36.25 - 42.83 (6.58)
Automatic data collection results in very large database (VLDB) requiring fully automated data analyses.
Reliability of LENA labels, previous findings

ASR agreement for segments humans labeled as

‘adult’ = 82%
‘child’ = 76% & 73%

Human agreement for segments ASR labeled as

‘adult’ = 68%
‘child’ = 70% & 64%

Xu et al 2009; Christakis et al 2009; Warren et al 2010; Zimmerman et al 2009; Oller et al 2010
Reliability of LENA labels, previous findings

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHN-child</td>
<td>85.9</td>
<td>.709</td>
</tr>
<tr>
<td>FAN-mother</td>
<td>59.6</td>
<td>.505</td>
</tr>
<tr>
<td>MAN-father</td>
<td>60.8</td>
<td>.598</td>
</tr>
</tbody>
</table>

Acoustic Factors:
1. duration
2. f_0 – mean
3. f_0 – min
4. f_0 – max
5. f_0 – rise
6. f_0 – fall
7. amp, RMS
8. amp, rise
9. amp, fall
10. amp, modulate
Previous work points to duration and static F0 as primary factors in the classification.

The present work asks if classification performance changes with (speech) input from a disordered population, namely children who are hard of hearing.
The present work, method and design

- 2340 tokens from 26 families with a HH child
- 13 additional judges not in the first expts.
 about 2hrs of listening per judge
- 4AFC: mom, dad, child, other
Reliability of LENA labels, current findings
How do acoustic factors drive human and machine classification decisions for families with TD kid?

HUMANS

- **max.f0 >= 399**
 - **mean.f0 >= 190**
 - **duration < 995**
 - **father**
 - **mother**
 - **child**

MACHINE

- **max.f0 >= 251**
 - **max.f0 >= 399**
 - **mean.f0 < 202**
 - **duration < 595**
 - **father**
 - **mother**
 - **child**
 - **mother**

TD

HH

- **max.f0 >= 399**
 - **duration >= 215**
 - **mean.f0 < 189**
 - **duration < 980**
 - **other**
 - **father**
 - **child**

- **max.f0 >= 399**
 - **min.f0 >= 229**
 - **duration < 970**
 - **mother**

13
Reliability of LENA labels, current findings

How do acoustic factors drive human and machine classification decisions for families with HH kid?

FACTORS:

1. duration
2. f_0 – mean
3. f_0 – min
4. f_0 – max
5. f_0 – rise
6. f_0 – fall
7. amp, RMS
8. amp, rise
9. amp, fall
Conclusions

1. Human and machine decisions use a similar subset of factors in decision making; duration and f_0 appear to be important, but amplitude does not appear to play a role.

2. Machines and humans use similar strategies to assign talker labels to acoustic input: f_0 dominates duration, and amplitude is not too important.

3. Machine and humans seem to treat TD and HH data similarly; very long duration (>970ms) may be unique to TD kids; interestingly, some of the f_0 or f_0-contour did not seem to be unique to TD kids.

4. Data is messy. Individual difference, algorithm artifacts (whisper, singing, range parameters), may influence machine output, but we can only speculate.

5. Other factors may play a role: spectral envelope/mean/tilt, shimmer (amp error), jitter (f_0 error), SNR, nasalance, vocal quality (creak, fry), etc.